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ABSTRACT

An analytic solution for the magnetic field in the space

defined by a spherical Moon and its downstream cylindrical

cavity formed by the solar wind is derived for interplanetary

magnetic fields both parallel and perpendicular to the cavity

axis. By superposition, the solution is obtained for arbitrary

orientations of the interplanetary field. The theory is

quasistatic and is formulated in terms of a scalar magnetic

potential. Thus the Moon model consists of a core of

arbitrary size and infinite electrical conductivity surrounded

by a nonconducting shell; the cavity volume is also assumed to

be nonconducting. The variation of the magnetic field on the

lunar surface, both on the sunlit and on the dark side hemispheres,

and on the cavity boundary is presented for various values of

core radius. The solution also yields the distribution of

currents on the lunar sunlit surface and the surface of the

cavity. Theoretical transfer functions are also presented

and their variations with position on the lunar surface and

with core size are discussed. The results are compared with

those of spherically symmetric approximations to lunar magnetic

induction.
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INTRODUCTION

Quantitative measurements of lunar electromagnetic in-

duction by the Apollo 12 surface magnetometer have provided

a considerable stimulus towards understanding the role played

by the asymmetric plasma environment of the Moon in this

phenomenon. Magnetic field fluctuation data, obtained when

the surface magnetometer is on the front side, i.e. the side

directly exposed to the solar wind or magnetosheath plasma,

have been interpreted in terms of a spherically symmetric

theory which assumes no scattered electromagnetic radiation

[Sonett et al., 1971a, b; Sonett et al., 1972a]. The analytic

formulation of this theory was carried out by Schubert and

Schwartz [1969, 1972], Schwartz and Schubert [1969] and Blank

and Sill [1969]. The no scattering assumption is equivalent

to assuming that magnetic fields associated with induced

currents in the Moon are confined to the lunar volume. On

the front side this condition is approximately correct since

waves cannot travel upstream in the supermagnetosonic plasma.

Further, magnetometer experiments on the lunar sunlit surface

have shown that the fields induced in the lunar interior by

the action of fluctuations in the interplanetary magnetic

field are strongly confined by the momentum flux of the solar

wind [Sonett et al., 1971c]. However, because of the inter-

ruption of the solar wind flow by the Moon and the consequent
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lack of plasma dynamic pressure on the dark lunar hemisphere,

it is likely that magnetic fields induced in the lunar interior

leak into the cavity.

Magnetic field fluctuation data, obtained when the surface

magnetometer is on the far side within the diamagnetic cavity,

have been interpreted in terms of a spherically symmetric theory

which assumes vacuum scattering [Dyal and Parkin, 1971; Dyal

et al., 1972]. The theoretical formulation of the spherically.

symmetric vacuum scattering problem is a classic exercise in

electrodynamics (see e.g. Stratton, 1941). However, the in-

duced magnetic fields are in fact essentially confined to the

body of the Moon and the space of the cavity. Approximate con-

finement to the interior of the cavity occurs since downstream

travelling scattered waves in the supermagnetosonic solar wind

are limited to the interior of the Mach cone extending down-

stream from the limb. A self-consistent confinement current

layer therefore exists along the cavity walls and distorts that

part of the lunar induced field found on the dark hemisphere.

The confinement current system is conceptually distinct from

the currents associated with the cavity diamagnetism [Colburn

et al., 1967]. Both the confinement currents and the diamagnetic

currents are the result of discontinuities in the tangential

magnetic field. The model discussed in this paper is restricted

to confinement currents.

Lunar magnetic induction at hydromagnetic frequencies is a
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global phenomenon; it follows that a theory for the induction

should account for asymmetric plasma conditions surrounding the

Moon. In this paler, Part I, we present an asymmetric induction

theory and compare the results with those of the two spherically

symmetric approximations. In Part II, lunar surface magnetometer

data will be discussed and interpreted using the asymmetric

theory. We note in this connection that Reisz et al. [1972] have

considered the asymmetric induction problem for a cylindrical

Moon. Their solution was obtained using a numerical finite

difference scheme but the lack of detail in their paper makes

an evaluation difficult [Sonett et al., 1972b]. The analytic

solution of this paper carried out for a spherical Moon shows

that the front side spherically symmetric solution is more accurate

than the results of Reisz et al. [1972] would indicate.

The solar wind distorts the dipole and higher order multi-

pole parts of the time dependent induced lunar field in a manner

somewhat similar to the distortion of the Earth's dipole field

by the solar wind. Thus we speak of a time dependent lunar

magnetosphere; its boundaries are delineated by the front side

lunar surface, the diamagnetic cavity walls and the interior

lunar bulk electrical conductivity profile [Sonett and Colburn,

1968; Johnson and Midgley, 1968]. The sunward surface of the

Moon corresponds to the Earth's magnetopause. In the case of

the Earth's field, the magnetopause is formed where the magnetic

pressure of the dipole field is comparable to the dynamic pressure
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of the incoming plasma. In the lunar case, the magnetic

pressure of the induced fields is insufficient to balance the

solar wind dynamic pressure. Rather, the lunar surface, which

is a fixed boundary and absorbs much of the incident plasma,

marks the sunward extent of the induced field. The lunar

magnetosphere concept is supported by the theoretical results

presented here and the empirical data of Part II. For example,

in this paper we show that for a lunar magnetic field induced

by an interplanetary field transverse to the direction of solar

wind flow, there are two points on the surface of the sunlit

hemisphere where the magnetic field tangential to the surface

vanishes. These points are qualitatively similar to the neutral

points found on the Earth's sunward magnetopause [Spreiter and

Alksne, 1970]; however, for the Moon the positions of vanishing

tangential field are not neutral points because the radial field

does not vanish there.

The next section gives a description of the theoretical

model. Following that we proceed to a discussion of the re-

sults of the analysis. Mathematical details are given in the

appendices. This will permit the reader mainly interested in

the configuration of the distorted induced lunar magnetic field,

i.e. the lunar magnetosphere, to avoid the mathematical complexity

of the theory.
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THEORETICAL MODEL

Induced lunar magnetic field lines must accommodate them-

selves to an available volume delineated by the front side

lunar surface, the cavity boundary and. the lunar electrical

skin depth profile. A precise radial. location of the internal

boundary to this volume cannot be determined in general since

attenuation of electromagnetic waves occurs over a range of

depths. However, an equivalent depth can be defined for a

given frequency, such that a correct measure of the inductive

response is obtained by considering the Moon to be nondissipa-

tive above this depth and perfectly conducting below. Thus the

exclusion of fluctuating fields from the lunar interior as a

result of cumulative attenuation is modelled with a perfectly

excluding core of an equivalent size. The model adopted here

is thus a quasistatic one in which the induced lunar field lines

are distorted to occupy the space between an infinitely con-

ducting core of radius b and the confining boundaries of the

front side lunar surface of radius a and the walls of the cylindri-

cal cavity of radius a which extends downstream from the Moon

(positive z-direction). Both the lunar shell of thickness (a-b)

and the downstream cavity are nonconducting.

The center of the Moon coincides with the origin of the

coordinate system and the axis of the cylinder is the z-axis.

We use both spherical coordinates (r, E, cp) and cylindrical
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coordinates (p, cp, z). The geometry is illustrated in Figure 1.

The space outside the Moon and the cavity is occupied by solar

wind or magnetosheath plasma, and magnetic fields, associated

with induced currents in the Moon,'on the lunar front side

surface, or on the cavity boundary, cannot penetrate this

region.

At the frequencies of interest, the lunar cavity radius

is much smaller than the vacuum wavelengths of electromagnetic

waves, thus displacement currents are negligible. In the non-

conducting shell of the Moon, and in the cavity, the magnetic

field is derivable from a scalar potential Q

H = V (1)

QO = 0 . (2)

The theory assumes that the external fluctuating field

is spatially uniform. Most of the frequencies of interest

are sufficiently low so that the solar wind sweeps through an

appreciable distance in times comparable to the periods

associated with the induction. For example at a frequency

of 10 Hz, a relatively high frequency for lunar surface

magnetometer observations, and a solar wind speed of 400 km/sec,

the solar wind travels 4x104 km or about 20 lunar radii in a

wave period. Because of the cavity deformation of the induced
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field, dipole and higher order multipoles of the induced field

are present; however, the high frequency modification of these

multipoles, due to spatial nonuniformity in the external field

which is present at sufficiently short time scales, is not in-

cluded in the theory.

Everywhere external to the Moon and cavity we assume the magnetic

field to be uniform, of magnitude unity (without loss of

generality), and oriented either normal to the cylindrical axis

e.g. in the y-direction, or parallel to the cavity axis, i.e.

in the z-direction. By superposition, the solution for an

arbitrarily oriented external magnetic field can be obtained

from the fundamental solutions presented here. The boundary

conditions to be satisfied by the solutions of (2) are continuity

of the normal component of magnetic field on the cylindrical,

boundary and the front side lunar surface and zero magnetic

field normal to the surface of the inner core. In addition,

the magnetic field in the cavity and in the insulating shell

must be continuous on the far side lunar surface.

The possible effects of diamagnetism on the induced

field are not included. Diamagnetism influences the steady

field by leading to an increase of the steady interplanetary

field inside the cavity. We are concerned here only with the

time varying field, but it also might be influenced by fluctua-

tions of the intensity of diamagnetism as the solar wind para-

meters vary. We also neglect the effects, other than confinement,
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of the undoubtedly complex processes occuring in the interaction

layer of the cavity walls.
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DISCUSSION OF RESULTS

The details of the analytic solution are presented in the

appendices. Appendix A deals with the case of the external

magnetic field perpendicular to the cavity axis and appendix

B considers the external field aligned along the cavity axis.

For each orientation of the external field we write the scalar

magnetic potential and the fields in the nonconducting lunar

shell in terms of expansions in spherical harmonics. Similarly,

in the cavity, the potentials and fields are given by expansions

in terms of cylindrical eigenfunctions of the Laplace equation.

This facilitates the application of the boundary conditions on

the cavity walls. The solutions in the cavity are then written

in terms of spherical harmonics with the aid of an identity

which permits expansion of cylindrical eigenfunctions in terms

of spherical ones. Finally, application of the appropriate

boundary conditions on the lunar surface r=a determines the solu-

tions.

In addition to the asymmetric solutions, formulas for the

magnetic fields in the spherically symmetric vacuum SSV approxi-

mation (A.10) - (A.13) and (A.48) - (A.50) and the spherically

symmetric plasma SSP approximation (A.6) - (A.9) and (A.45) -

(A.47) are given in the appendices. In the SSV case, the field

is just the superposition of the uniform external field and an

induced dipole which prevents the external field from penetrating
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the infinitely conducting core. In the SSP case, the solution

is similar except for an amplification of the strength of the

induced dipole as a result of compression of the induced field

into the lunar shell.

If the radius of the lunar core is zero the magnetic field

is everywhere the uniform field existing outside the space of the

Moon and cavity. This may be seen in the case of the external

field normal to the cavity axis, for example, from (A.28) and

(A.29). With b=O, al=l and the equations for the coefficients

CZ are homogeneous. Thus C,-O and from (A.15) - (A.17) it

follows that the magnetic field in the cavity is simply the

uniform external field. Further, from (A.30) and (A.31) it is

clear that Al=l and At=0 for ct2. Using (A.5) we find B,=0

for all t . Thus the field inside the Moon is indeed the

uniform field of the external space.

In the following we present results showing magnetic

fields and transfer functions for different external field

orientations and core radii between 0.5 and 0.9 lunar radii.

Differences between the spherically symmetric approximations

and the exact solutions of this paper generally become increas-

ingly significant as the core radius increases, corresponding

to waves whose attenuation is progressively more significant at

shallower depths in the Moon. Thus the inadequacy of spherically

symmetric approximations will be most serious at the high frequency

end of the spectrum accessible with the lunar surface magnetometers.
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Lunar Surface Fields for External Field Parallel to Cavity Axis

Figure 2 shows the radial component of the total magnetic

field on the dark side lunar surface (r=a), 0<0< n/2 , as a

function of e . Also shown is the radial magnetic field computed

from the SSV approximation. All fields are scaled to an ex-

ternal field of unit amplitude. On the sunward side of the Moon

the radial magnetic field is identical to the radial component

of the external field, cosO. In the SSV approximation the

radial field increases monotonically from zero at the limb to a

maximum at the antisolar point and shows a cose dependence.

Also, as the core radius increases, for a given 0 , the radial

SSV field decreases. For all b/a the radial field is larger

than that of the SSV approximation, the difference becoming

more significant as b/a increases. For b/a = 0.5, 0.6, and 0.7

the radial field increases monotonically from zero at the limb

to a maximum at the antisolar point. However, for b/a = 0.8

and 0.9 the radial field increases to a maximum very near to the

limb and subsequently goes through a minimum as 0 approaches 0 ° .

As a result, near the limb the field decreases with increasing

core size, whereas near the antisolar point the field increases

with increasing core size. The increase in the radial field

above the SSV value, the local minimum in the field seen near the

antisolar point and the field maximum near the limb for large

cores can all be understood in terms of the distortion of the

induced field which adjusts to the available space defined by the

c~3
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nonconducting shell and the cavity. For the larger values of b/a

the combined fields of the cavity and interior currents add to

raise the total to a very large value near the terminator. Away

from the terminator, i.e. towards the antisolar point, the total

field drops quickly but never to a value equal to the SSV case.

Thus either the cavity edge field is of very high order and

therefore of short range, or its direction is rapidly changing

so that its contribution to the radial component of the lunar

far side surface field attenuates rapidy as 0-0, or both these

effects are present.

Figure 3 shows the 0-component of the total field at the

surface of the Moon normalized as before to unity driving field

and the 9-component of the SSV field for varying b/a. The SSP

fields on the front side lunar surface are virtually identical

to the fields of the exact solution. Front side amplification

of this field is thus negligibly affected by the day-night

asymmetry of the lunar plasma environment. On the lunar far

side, H
e

is also amplified considerably above its SSV value,

amplification increasing with increasing b/a and proximity to

the limb. As one might expect the effect of cavity confinement

of the far side field dominates near the terminator where Ho

attains a maximum.

It is interesting to note that the calculations show the

maximum to move slightly forward of the terminator with increas-

ing b/a. For b/a = 0.9 this maximum is about 3-4 degrees ahead
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of the limb (a precise location of the maximum would require

evaluating the field on a finer 0 scale than was done for this

paper). This is a consequence of field line redistribution

internally in the Moon as a result of the day-night asymmetry

of the space external to the Moon. Figure 3 clearly shows a day-

night asymmetry in He which becomes more pronounced for increas-

ing b/a. This is readily understandable since the compressive

effects of the solar wind are different from those of confinement

by the cavity. Lastly we note that for the case of the external

field aligned along the cavity axis HP vanishes and Hr and Ho

are independent of cp because of azimuthal symmetry. It is

remarkable that for the external field aligned case the front

side lunar surface magnetic field is practically identical to the

SSP approximation while the dark side surface field is significantly

different from the SSV field even for large b/a

Lunar Surface Fields for External Field Perpendicular to Cavity Axis

We next turn to the configuration where the external magnetic

field lies normal to the cavity axis. Figure 4 shows the radial

component of the field on r=a vs. 0 between the antisolar point

and the terminator together with the SSV approximation to this

field, At the limb Hr must be unity to preserve continuity of

the normal component of the magnetic field. Similarly on the

sunward side of the Moon this continuity condition prescribes

the variation of Hr with 0 to be that of the external field. We
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note that Hr ~ sincp so that the variation of Hr shown is for the

y-z plane. Alternatively, for an external field in the x-direction

the variation of Hr in Figure 4 would be for the x-z plane.

The dependence of Hr on 0 is very different from that of

the SSV approximation. Near the antisolar point the asymmetric

theory gives values of Hr which are smaller (increased induction)

than those found from the SSV theory. However, the situation

reverses as the terminator is approached where the values of Hr

are larger than the SSV values. The changeover takes place at

a value of 0 determined by the size of the core; as b/a is in-

creased the crossover occurs nearer the limb. Further the SSV

radial functions are concave downwards everywhere on the dark

side while the asymmetric calculations show radial functions

which display upward concavity over large 9 intervals. It is

particularly interesting to note the case of b/a = 0.9 where Hr

for asymmetric induction is nearly zero over a range of 0 up to

600 from the antisolar point. This can be understood by noting

that the distortion of field lines around the infinitely con-

ducting core must be accommodated entirely within the cavity

space, while in the SSV approximation the field line distortion

is more gradual and can occur in the entire space external to

the core.

Figure 5 shows the calculations for He which is - sincp (see

Appendix A). This figure views Ha in the plane cp = n/2, i.e.

the plane defined by the external field and the cylinder axis.



-15-

For convenience we can think of the forcing field to lie in the

plane of the ecliptic, which then means that He is measured

equatorially about the Moon. It is clear however that the plane

as defined above can take on any orientation that includes the

cylinder axis. For comparison, Figure 5 also shows the SSV dark

side field for b/a = 0.9 and the SSP front side fields for b/a =

0.8 and 0.9. The fields on the front side are generally smaller

than the SSP fields. For b/a = 0.9 the differences between

actual and SSP fields are largest and amount to nearly 20 per

cent at the subsolar point. The differences diminish as b/a

becomes smaller. On the dark side He is larger than the SSV

approximation. There is considerable cavity amplification of He

which can increase as the limb is approached from the antisolar

point. The SSV approximation always yields a monotonic decrease

of He with proximity to the limb.

An important aspect of the distortion introduced by the

asymmetry is that He vanishes for a value of e > 90° , the zero

of He occuring more forward of the limb for increasing b/a. This

is qualitatively similar to the case of the Earth's magnetosphere

as discussed in the introduction. Generally speaking the dynamic

pressure of the solar wind is so much greater than the pressure

of the induced field that one should think in terms of field

line redistribution here rather than sweeping back of field lines

to the dark side by the action of the solar wind, as is often

mentioned as the mechanism for the formation of the Earth's
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magnetic tail. The case b/a = 0.9 shows a nonmonotonic varia-

tion in HO on the dark side of the Moon which is attributable

to the 9-component of the summed fields of the cavity and core

currents peaking at an angle 9<90'. This effect essentially

disappears for small b/a. The decrease in the sunward response

of the Moon from that of the SSP approximation is attributed to

redistribution of field lines from the front to the back.

A discussion of the field H is not presented here since

it will be seen that HW can be viewed as being identical to the

North-South transfer function which is discussed in a later

section.

Magnetic Fields on the Cavity Boundary

We have computed the magnetic fields along the walls of the

idealized cavity for the two cases of the external field along

and normal to the cavity axis. In the next two figures we use

cylindrical coordinates to describe the magnetic field. Figure 6

shows the field H
z
on the cavity wall for the case of aligned

external field as a function of distance along the cavity from

the terminator. The abscissa also shows the angle a correspond-

ing to the varying distance. Since the normal component of

magnetic field is required to be continuous on the cavity wall,

Hp = O. Also because of azimuthal symmetry Hp vanishes. The

field is a maximum at the terminator and decreases with distance

along the cavity, becoming vanishingly small for distances in
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excess of about one lunar radius downstream from the limb,

corresponding to 0 of ; 450° . Also H
z

increases in magnitude

for larger b/a. Azimuthal surface currents of density Kp = Hz

(MKS units are understood) flow on the cavity wall and are

responsible for the cavity confinement of the induced fields on

thedark side. As in the case of the field, the current density

attains its maximum value at the terminator. In the neighbor-

hood of the limb the cavity-wall currents are of the same order

of magnitude as those which flow on the sunward side in response

to the confinement there of the induced magnetic field. The

surface current density on the sunlit hemisphere can be found

from KP= - sinO - He.

We turn next to the case of the external magnetic field

perpendicular to the cavity axis. Figure 7 shows the magnetic

fields Hz and Hp along the cavity walls for this case. The

field component Hp is simply that component of the external

field by continuity of Hp at p=a. Note that H
m

~ cosp and

Hz - sincp. Thus we view HP in the plane which includes the

cavity axis and the normal to the external field, and we view

Hz in the plane which includes the cavity axis and the external

field. The field Hz peaks at about 0.5 lunar radius downstream

from the terminator. The importance of the ratio b/a in determin-

ing the magnitude of the cavity wall fields is apparent. In

this case two current components coexist on the cavity walls.

Azimuthal currents of density K p = Hz are found as in the aligned
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field case and we find this circulating current system peaking

downstream at 0.5 lunar radius. Additional currents flow in

the z-direction with density Kz = HP - coscp. The current system

on the cavity boundary is of course continuous at the terminator

with the current system on the sunward side of the Moon which is

given by Kp = cosO sincp - He and Ke = -Hcp + cosp. No dissipa-

tion arises from these currents and they are to be regarded as

Hall currents flowing across the local field. Currents flowing

across the front surface of the Moon to conform with the con-

finement requirement close in a complex pattern over and under

the lunar cavity. Cavity compression of induced fields may be

attributed to the currents Kz, KP on the cavity boundary.

Transfer Functions

For comparison to experimental data as will be done in

Part II it is convenient to describe the lunar response in terms

of transfer functions, i.e. ratios of the observed field com-

ponents to corresponding components of the external field. The

empirical data presented in Part II is given in terms of radial

or local vertical, North-South and East-West transfer functions.

The directions are all local at the site of the Apollo 12 surface

magnetometer which is essentially in the ecliptic plane. Con-

tributions to the North-South transfer function can only be made

by an external field which is perpendicular to the ecliptic

plane. Thus the North-South transfer function is identical to



the field HP viewed in the ecliptic plane and driven by an

external field of unit amplitude which is normal to the cavity

axis and the ecliptic plane. The North-South transfer function

is independent of the absolute spatial orientation of the ex-

ternal field as long as it has some nonzero component normal

to the ecliptic plane.

Figure 8 shows the North-South transfer function calculated

from the asymmetric theory as a function of 0 together with the

SSV and SSP values for comparison. Both the SSV and SSP approxi-

mations to this transfer function are independent of solar

longitude (solar longitude or local time at the site of the

surface magnetometer is identical to 0 in this view of the

North-South transfer function). For the SSP approximation we

find from (A.8) or (A.9) that the tangential transfer function

Is

1 + 3 b3 /2
a3_b3

and for the SSV approximation it follows from (A.12) or (A.13)

that the tangential transfer function is

+
2a

The effects of asymmetric confinement stand out clearly. As in

the discussion of the fields, the larger b/a, the greater the
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departure of the asymmetric transfer function from the spherically

symmetric approximations. We note that confinement is strongest

on the sunward side of the Moon, though not as great as that pre-

dicted by the SSP approximation. The reduced amplification on

the front side below the SSP value can be understood in terms of

the leakage of induced field lines into the cavity space and the

redistribution of front side field lines to the back with an

accompanying decrease in front side compression. Amplifications

are in agreement with the values found experimentally (see Part II).

The values of the transfer function decrease monotonically as one

moves from the subsolar towards the antisolar point indicating

that effective confinement becomes less perfect as the dark side

of the Moon is approached. Nevertheless, it can be seen that in

spite of the assumption of perfect vacuum in the lunar cavity,

there is substantial amplification of the North-South magnetic

field on the dark side, where values of amplification are always

larger than those of the SSV approximation. This increase in the

far side amplification above the SSV value can be understood in

terms of cavity compression of the induced field. For b/a > 0.8

the amplification is everywhere greater than the theoretical high

frequency limit (1.5) for a conducting Moon in vacuum.

Unlike the North-South transfer function, the radial and

East-West transfer functions depend on the absolute orientation

of the external field. External fields in the ecliptic plane

induce magnetic fields which determine these transfer functions.
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Since these external fields can be arbitrarily oriented in the

ecliptic plane, the radial and East-West transfer functions

cannot be a-priori defined. Their values depend on the relative

contributions of external field components parallel and perpendicu-

lar to the cavity axis.

As an example we show the radial transfer function for an

external field which is at 450 to the cavity axis and in the

ecliptic plane and co = 90° . Figure 9 shows this transfer function

for varying b/a as a function of 0. The boundary condition on

the normal component of the magnetic field requires that the

radial field component be continuous across the front surface of

the Moon so that on the entire front side this transfer function

is unity for any b/a. On the dark side of the Moon a minimum is

seen at about 30 degrees away from the antisolar point. As

before the variation in the transfer function increases with b/a.

Note that the transfer function in the SSV approximation is in-

dependent of solar longitude (as in the case of the North-South

transfer function solar longitude or local time is identical to
b3

0) and is given by 1 - 7 (see (A.49) ).

At the subsolar and antisolar points, He , HP and the

tangential (North-South and East-West) transfer functions are

identical. Only external fields normal to the cavity axis

induce fields which contribute to these quantities. Figure 10

shows the tangential transfer functions at the antisolar and

subsolar points together with the appropriate spherically
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symmetric approximations vs. b/a. At the subsolar point the

transfer function is smaller than the SSP approximation, the

difference being negligible for small cores, i.e. low frequency

waves, and important for large cores, i.e. high frequency waves

which damp at relatively shallow depths. At the antisolar point

the transfer function is larger than the SSV approximation, the

difference becoming more significant as the core size increases.

The variation with b/a of the radial transfer function at

the antisolar point is presented in Figure 11. The SSV approxi-

mation to the transfer function is consistently smaller than

the radial transfer function of the asymmetric theory. For a

given lunar conductivity model the SSV approximation over-

estimates the induction.

Finally in Figure 12 we show the North-South transfer

function at the limb vs. b/a. The radial transfer function at

the limb is unity and the East-West transfer function at the limb

is dependent on external field orientation. Neither the SSP

nor.SSV approximations to the North-South transfer function are

a-priori expected to be good at the terminator. Both approxi-

mations are also shown in the figure. The transfer function has

values intermediate between the SSV and SSP approximations. The

North-South magnetic field shows considerable amplification at

the limb with values closer to those of the SSP than to those

of the SSV approximation.
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CONCLUSIONS

The analytic solution of this paper predicts the ways in

which the confinement attributable to the diamagnetic cavity

influences lunar magnetic induction and permits a quantitative

assessment of the importance of these effects for various

frequencies and for both sunward and dark hemisphere transfer

functions. The results will be used in Part II to compare the

theory with experimental transfer functions for both sunward

side and dark side data.

Field line leakage into the cavity and the internal re-

distribution of field lines from the front side of the Moon

to the night side contribute to a reduction of the sunward side

field line compression from that which would be predicted by

the spherically symmetric plasma approximation. Cavity com-

pression of field lines, consistent with surface currents on the

cavity boundary, acts to amplify the tangential magnetic fields

and significantly alters the radial magnetic field on the lunar

dark side from the prediction of the spherically symmetric

vacuum approximation. These effects are most important for waves

whose equivalent exclusion depths are small.
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FIGURE CAPTIONS

Figure 1. Geometry of the theoretical model. The Moon has

radius a with a spherical core of infinite electri-

cal conductivity, a=- , surrounded by a nonconduct-

ing shell of thickness (a-b). A cylindrical non-

conducting cavity of radius a extends downstream

from the Moon. The coordinates r, 0 , cp are spherical,

p, cp, z are cylindrical coordinates, with the origin

of both coordinate systems at the center of the Moon

and the z-axis coinciding with the cylinder axis.

The external field is uniform and is either normal

to the cavity axis, i.e. in the y-direction (cp = 1/2)

say, or parallel to the cavity axis. The variable

core radius allows investigation of waves of different

frequency which are excluded from different portions

of the Moon.

Figure 2. The magnetic field component Hr and the SSV approxi-

mation to Hr as a function of position on the dark

side lunar surface, r=a, 0<0< 90° . The external

field has'-unit amplitude "and is';'para lle.l,to the

cylinder axis. The antisolar point is 9=0° while

0=90° is the limb. Note the increase in the radial

field above the SSV value, the local minimum in the
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Figure 2 (continued)

field near the antisolar point and the field maximum

near the limb, the latter two phenomena for large b/a.

Figure 3.

Figure 4.

The magnetic field He on the lunar surface as a

function of e for various b/a. The external field

has unit amplitude and is aligned with the cavity

axis. The field according to the SSV approximation

is shown for b/a = 0.5 and 0.9. The field from the

SSP approximation is virtually identical to the asym-

metric field for 900°<<180°. There is considerable

amplification of He on the lunar dark side. Further

the amplification is asymmetric with respect to the

terminator. Both the magnitude of the amplification

and the extent of the asymmetry in the lunar response

increase with b/a.

The radial magnetic field on the lunar dark side

surface with b/a as a parameter when the external

field of unit amplitude is aligned normal to the

cavity axis. The radial field according to the SSV

approximation is also shown. On the lunar front side,

Hr is identical to that component of the external

field. The radial field is viewed in the plane of

the external field and the cylinder axis. The field
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Figure 4 (continued)

is reduced below the SSV value near the antisolar

point but exceeds the SSV value near the terminator.

For b/a = 0.9 the field is essentially zero within

600 of the antisolar point.

Figure 5.

Figure 6.

The magnetic field component He on the lunar surface

vs. 0 for various b/a in the case of unit external

field normal to the cavity axis. The field according

to the SSV approximation for b/a = 0.9 is

shown for 0<e<90° and He from the SSP approximation

for b/a = 0.8 and 0.9 is shown for 900 <e<1800 . The

field is viewed in the plane of the external field

and the cavity axis. On the front side near the sub-

solar point He is reduced below its SSP value, while

on the dark side near the antisolar point He is

amplified above its SSV value. The field has a zero

forward of the terminator as a result of the redistri-

bution in the lunar interior of field lines from the

sunward to the dark side hemisphere.

The field H
z
on the cavity boundary p=a as a function

of distance downstream from the limb with b/a as a

parameter. The unit external field is parallel to

the cavity axis. Note the attenuation in Hz with
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Figure 6 (

Figure 7.

Figure 8.

continued)

distance from the limb; beyond about one lunar

radius Hz is essentially zero. The figure also

shows the distribution of azimuthal surface current

density K
m

= Hz .

The field components Hz and H
m

, or alternatively the

surface current densities K = Hz and Kz = H
m

- 1,

on the cavity boundary p=a as a function of z for

various b/a. The unit external field is perpendicular

to the cavity axis. The currents K
m
P or fields Hz

decay monotonically with distance downstream from

the terminator. The currents K or fields HP attain
z cp

a local maximum downstream from the limb before decay-

ing to vanishingly small values.

The North-South tangential transfer function vs. solar

longitude or local time with b/a as a parameter. The

curves also represent Hp for a unit external field

perpendicular to the cavity axis if Hp is viewed in

the plane containing the cylinder axis and the normal

to the external field. Values for the SSP and SSV

approximations are also shown. For clarity of the

figure, the b/a parameter has been omitted from the

SSV lines. These values are b/a = 0.6, 0.7, 0.8 and

0.9, proceeding in order from the lowest to the highest
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Figure 8 (continued)

SSV line. The transfer function or HP is inde-

pendent of 0 in the spherically symmetric approxi-

mations. Note the reduction in front side amplifi-

cation below the SSP value and the increase in the

dark side amplification above the SSV value.

Figure 9.

Figure 10.

The radial transfer function vs. solar longitude for

several b/a. The external field is at 450 to the

cavity axis and in the ecliptic plane and cp = 90° .

For the entire front side, the radial transfer function

is unity. On the lunar dark side, the transfer

function shows a minimum about 30° from the antisolar

point. The transfer function in the SSV approximation

is independent of solar longitude.

The fields He , Hp or alternatively the tangential

transfer function at the subsolar point 0 = 1800 and

at the antisolar point 0=0° as a function of core

size. The cavity amplification of fields at the anti-

solar point and the reduced amplification of fields

at the subsolar point due to field line leakage into

the cavity become increasingly important for larger

cores, corresponding to waves whose effective exclu-

sion depths are progressively shallower.
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Figure 11.

Figure 12.

The radial transfer function at the antisolar

point vs. b/a together with the SSV approximation.

For a given lunar conductivity model the SSV approxi-

mation overestimates the induction.

The variation with b/a of the North-South transfer

function at the limb. Both SSV and SSP approxi-

mations are also shown. The North-South magnetic

field shows considerable amplification at the limb

with values closer to those of the SSP than to those

of the SSV approximation.
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APPENDIX A

ANALYTIC SOLUTION FOR EXTERNAL MAGNETIC

FIELD NORMAL TO THE CAVITY AXIS

The potential in the insulating shell DI is

I E (r. B( ,r 1 ) rl (cose) sincp (A.1)

t=1

where At and B~ are coefficients to be determined as part

of the solution, and P](cose) are the associated Legendre

functions of order 1 (the sign convention used here is such that

for example Pl(cosG)= sine). The p dependence of ] follows

from that of the external magnetic field which is

A

r sinO sinp + 0 cosO sincp + mC coscp

or

p sincp + cp coscp

where r, 0, p and n, ', z are the unit vectors of the

spherical and cylindrical coordinate systems, respectively.

The magnetic field in the shell is

HIr = {tA r'T -(.t+l)B1r't 2 } Pj(cos)sinp , (A.2)

·.=1
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H' =-(co + Ir-2) dPt(cose) (A3)I-2dP (cose)
HI . (A rAr 1 + B r t- 2) -t - sinmcp (A.3)

5=1

H; At r ~C'*~l + B r coscp (A.4)

&i=l

The coefficients AC and BL are related by the condition

that the radial component of magnetic field be zero on r = b

t Atb 1 - (Z+1) Bb . (A.5)

The normal component of magnetic field must be sine sincp on

r = a, T 5 9 5 n . For the case of spherically symmetric

plasma confinement(SSP), this condition is applied over the

entire range of 0, i.e. 0 to r . The solution is then straight-

forward with

a3 a3 b3 /2
A 1 = ' B1 = 3 At, Bt= 0 for t > 2 (A.6)

and in the insulating shell, region I

Hr = 3ne s (1 - ) , (A.7)
(a -b) r

He acose sip (A.8)
(a3_b b2r
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H = (+7 (A.9)

In the spherically symmetric vacuum approximation(SSV)it

is simple to verify that

A1 = 1, B1 =- At, Be = 0 for t, > 2 (A.10)

and in region I

Hr = sine sincp 1 - 7 (A.11)
r

/ b3,
He = cose sincp ( + bj (A.12)

2r

Hq = cosco [1 + (A.13)2r7(A.13)

The potential in region II, the cavity, is' given by

II c-k nZ
l := osincp + sincp Cn e Jl(knP) (A.4)

n=l

where Cn are coefficients to be determined in the solution,

J1 is the Bessel function of order 1 and kna is the nth zero

of J; (kna) = 0 (the prime denoting the derivative). The

magnetic field is

-k zII Cn n k (A.15)Hp = sincp + sincp 7 C e kn J1(kno) (A.15)

n=l
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IIHII = op + cos + csL
n=l

IIHz = - sincpz
n=l

-k z
Cne pn J1 (knp)

-k z
Cnkne n

(A.16)

(A.17)Jl(knp)

This solution automatically satisfies the continuity of Hp

on the cavity boundary p = a since Jj (kna) = 0. To apply

the boundary conditions on the hemispherical surface r = a ,

0 s 0 -< n/2 , (A.1 4) - (A.17)are most conveniently rewritten

in terms of spherical coordinates. With the aid of an identity

due to Cooke [1956] we find

co

II
0 = rsine sinp + 

~ =1

cn

H I = sine sincP +r

H II = cose Sinp +e

,=1

? cosco

t,=1

HI I

cp

n n+l.- (k r) (-1l)
C t

n=l (n+l) !

C sinc
C .r

C sr npt r

P n(osO)sincp, (A.18)

conl

7 t ( kr)n Pn(cose),(A.19)
n=l (n+l)!

nol dP (cose)('(-I ) (k r)
n

dn
n=l ( n+l )! 

, (A.20)

(-1 )n+l P (cose)
, (n+ll)' ( k r sin 

n=l
(A.21)

2
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Continuity of Hr on r = a yields

t=l

o±

t=l

{tA Pl(cos0) - sine =te

Pn (cose)na 
n=l

0<0 TT/2

(A.22)

or 0 , << 17

Equation (A.22) leads to the following relationship among the

unknown coefficients

2U'(t'+1) {'A ,a' -1-(t'+1 )B a 2 }
( 2t, +1 )

(o-l)n+ln (k a)n

(n+l) !
t'=1,2,3" 3

where f ,l =

= 0

pl ,( 0

P,, P
-t,

if Z' = 1

if l' f 1

) d PK (o) - P1
dPr

(0) dcP- (0)

(t+1) - t'(t'+1)

= ,'('+l )
(2t'+1)

4
3 b4 ,1

co

t=l

Ct V
a LJ

n=l

(A.23)

(A.24)

, t=tl , (A.25)

a
-

I-(t+l )Ba- t- 2 }

( - 1 ) n+ln ( an
( n+l) ' (kCa
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In (A.25) the argument of the associated Legendre functions

and their derivatives is cose = 0 .

On r=a, 0<0< TT/2, He and Hp are continuous. It is

sufficient to apply one of these conditions, the other being

redundant. Continuity of Hp leads to

co

- (A a
'-
l + B a- · 2 ) P%(cose) = sine

t=1

+ a E ) )n pni (cose) (A.26)£1 a £ LL (ka)n Pn~ n1

for 0<8< T/2 . To generate a set of equations for the

unknown coefficients from (A.26) it must be noted that on the

range of 0 given the odd associated Legendre functions form

a complete set. Expanding (A.26) in terms of this set of odd

associated Legnedre functions we find

A (at
- 1 + B3a- t 2) P = 2 

t=1

+ C , (_ln+l
+ a / (n+l)' (kta ) n Pn , (A.27)

t=1 n=l

for .' = 1,3,5,...

Equations (A.5), (A.23) and (A.27) suffice to determine

A~,~, and C . After considerable algebraic manipulation, a

single set of equations for C, may be derived
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(k a)' t'(t'+1 )

(2t'+l )(t'- + I ) !

(I gt - 1)

P ,(O)

n evenn even

+ ,

n odd

(kn+l )

(n+1)!

(kma)nn Pn(O)

(n+l ) !

dP1

~dcos (0) (. (a,, + ctn)-1)

t'(t'+1 )-n(n+l )

t, even

e( 2,t+l )

2t(t+1 )

-(Id , ( 0)) 2

[¢(,+, )-,'(,'+1 )][(¢+1 )-n(n+l )]

2 (-a

2U+1
1 + m, (a)T, +7 

t(1- (b) 
2

+
1

)

Once C. is determined from (A.28), At, may be found from

C

a

mo

m= 1

where

(A.28)

a = (A.29)

t' = 1,3,5....



A a =

(2~+1)pl(O)

2( (+1)1(1 (a) +2t 2(Z+l ) I_( ) 7a

?
m=l

C

a evenn even

dP1

n( kma) dcos (n )

(n+l)m! (+l)-n(n+l )j

for t odd and

C

' am (kma)

A at-1_ m=l

2(1 -(b) )(t+l)!

dP1
(2t+l) dco (0)

+ )21/+l
2I,2(t+l )[1

-
( -))

coo

n oddn odd

n(kma)n Pn(O)

(n+l )! L(+l)-n(n+l )}
(A.31)

for t even. With Ct and A, determined, Bt follows from (7).

The zeros of J; are tabulated in Abromowitz and Stegun [1964].

-A8-

6 ,1

+ I_(b)
a-~

(A.30)

Cm a (kma)'

m=l
Zd+1

2(1-(ab) )(t,+ )
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The infinite set of algebraic equations has been truncated

and solved numerically. Convergence of the solution has been

assured by increasing the size of the set until a further

increase in size produced a negligible change in the results.
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APPENDIX B

ANALYTIC SOLUTION FOR EXTERNAL MAGNETIC

FIELD PARALLEL TO CAVITY AXIS

The external magnetic field is

A A

z = cos8 r - sine

Thus the magnetic potential in the lunar shell is

co

QI = (AZr' + Bgr 1) It(cosO)

L=I

where P2 (cose) are the Legendre polynomials and the magnetic

field 's given by

0 ~ d0

H I = 1 (t1r - (+1 )B r t 2 ) P(

HIn = 7 'A rt~ ~I+ B r- t-2) d~tc

With the azimuthal symmetry characteristic of this external

field alignment, all quantities are independent of cp and there

is no azimuthal magnetic field. The coefficients At and Bt

(A.32)

(A.33)

(A.34)
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must satisfy the condition (A.5)

The magnetic potential in the cavity is

QII =n
I = z + Z C n ke

n=l

Jo( k'p)

where JO is the Bessel function of order zero and kna is

the nth zero of J%(kna) = 0. From the gradient of (A.35)

we find the magnetic field

co

-kI n 'z nII~~ C-kn kn '(~

HII = 1 - Z kCne
z ZL- nnl

n=l

Jo ( knp)

Note that H on the cavity boundary is identically zero.
p

The magnetic field in the cavity can be written in terms

of spherical coordinates using an identity from Cooke [1956]

similar to the one employed in Appendix A

IHI = ' Ce
Hr = r

t=l

co

Ln
n=l

(-1)n (kr)

(n-l )!
(A.38)Pn (cos) + cose

c( (kr)n dP
t n (-1i)n T (cose)-sinO

n=l

(A.35)

(A.36)

(A.37)

(A.39)HII = I

oo

Ha =

·e=1
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Equations (A.38) and (A.39) facilitate the application of the

continuity conditions on the lunar dark side.

Continuity of Hr on r = a yields

- (t+1l)Ba- t 2} P ,(cose) - cose =

a
t=I

co

L
n=l

n

(-1 )n (k ) Pn(cose) , O<e< TT/2
(n-l )!

(A.40)

or 0

From (A.40) we find

2 t'A ,at. , 1-('+1 )B ,at'-2' - 2 =

(2,'+1) t ' , 
=

co

_ a
,'=1

'=1 ,2,3' 3 (A.41)
7 (-1 )(k'a)

nl (n-1 )'

where

nQt. = ('1)n (2'+l )
if t'=n

dP dP,
P, dcosO (0) - Pn n (0)

n(n+l )-t'('+l )
(A.42)

{tAat- I
t=l

TT < <'"
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Continuity of He on r = a for 0<0< TT/2 yields

E (A.a l+B.a _t 2)PI(cose)=sino+ ' a (ka cos

·t=1 .=1a n=l

(A.43)

which upon expansion in terms of the set of odd associated

Legendre functions can be written

L P(A a +B ar - 2 )p =2 , a E n (k a)nP '

·e=1 et=l n=l

L=1 ,3,5, .. . (A.44)

Equations (A.5), (A.41) and (A.44) determine A., Bt and C.

for the aligned field case. In view of the detail presented

in Appendix A, further algebraic reduction of the aligned

field case will not be presented.

The SSP solution is

a3 a3b 3

A= a3 ab A, B=O for t.2, (A.45)
a-B 2(a3-b3)

Hr (1 -b) (A.46)
(a -b ) r



HI -a3 sino (1
H = (a3-b3

The SSV solution is

A1 =1 , B1= b3/2 , A=Be,=O
I I

I 
H = cose
r

for -t2

(I b3-)rr7

I ( + ¾)He= - sine I+ 2
2 7

-A14-

+b3)

2 r
)

(A.47)

(A .48)

(A.49)

(A.50)
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